	海洋能	Ocean Energy
	10.1 一般名詞	10.1 General Terms
10.1.1	海洋能	10.1.1 Ocean energy
	為一種能源,可藉著利用海洋之物理或	The energy that may be harnessed by
	化學特性的形式而得,計有潮汐、波	exploiting an aspect of the physical or
	浪、熱梯度、鹽梯度及洋流等。	chemical. Characteristics of oceans,
	(註)為一種能滿足消費需求的能源,	namely, tidal movement, wave motion,
	此等形式的海洋能為既有之供給能源所	thermal gradients, salinity gradients, ocean
	補充或補充進既有的供給能源中,或為	currents.
	一能源貯存系統所收集。	Note As a source of power to meet
		consumer demand these forms of ocean
		energy would normally be supplemented
		by or supplemental to a firmer source of
		energy supply, or buffered by an energy
		storage system.
	10.2 潮汐能	10.2 Energy by Tidal Movement
10.2.1	潮汐能	10.2.1 Tidal energy
	為一種利用水位變化所產生之位能及水	The energy that can be usefully recovered
	流所產生的動能(潮流能)而獲得之有	by exploiting the potential energy due to
	效的能源。此等存在於潮汐之能量歸因	the vertical displacement of mass from still
	於太陽、月亮與地球間所存在的引力與	water level or the kinetic energy due to
	其間轉動關係。	currents (tidal current energy), both caused
	(註)潮汐發電廠見 3.1.6。	by the ebb and flow (fall and rise) of the
		tides. The energy present in the tides is
		attributable to gravitational forces due to
		the moon and sun in association with the
		rotation of the Earth.
		Note For tidal power station see 3.1.6.
10.2.2	潮差	10.2.2 Tidal range
	介於鄰接高潮位與低潮位之水位差距。	The difference in levels between
		successive high and low waters due to
		tides.

10.2.3	潮增幅	10.2.3 Tidal amplification
	潮波向陸地前進,進入逐漸變淺的水域	An effect whereby the tidal range at the
	時之變形及因波在岸邊由於反射而增強	coast becomes greater than the tidal range
	之前進波的關係,使得岸邊的潮差大於	in the open sea, due to the waves
	外海的一種效應;此兩種效應皆對潮波	advancing landwards becoming deformed
	振幅有所影響,潮增幅之大小可能為海	as they enter progressively shallower
	岸之天然或人工因素而影響,但不會因	waters and due to waves reflected at the
	某一潮波而將增輻附加於另一潮波上。	coast reinforcing the advancing waves;
		both effects contribute to tidal
		amplification which may be influenced in
		its extent by the natural shape of the coast
		or by artifacts, but is not attributable to the
		superimposition of one tide upon another.
10.2.4	海灣共振	10.2.4 Estuary resonance; bay resonance
	因海灣構造與潮之波長的配合所發生的	The effect whereby the tidal range in an
	共振,造成海灣之潮差可能大於外海潮	estuary or bay may become greater than
	差之效應,此時海灣之自然自由頻率與	the tidal range in the open sea due to
	潮汐之振盪頻率一致;此種系統除了潮	resonance occurring when the
	汐能外無其他之能源。	configuration of the estuary or bay matches
	(註)海灣共振及潮增幅可能相伴發	the wavelength of the tide, so that a natural
	生。	free oscillation frequency of the estuary or
		bay accords with the oscillation frequency
		of the tide, the system having no other
		source of energy than the tide.
		Note Estuary resonance or bay resonance
		and tidal amplification can occur in
		combination.
10.2.5	潮堰	10.2.5 Tidal barrage
	位在橫過海灣或海口的蓄水工 程,設	Retaining works located across a bay or
	計為收集流入潮水於海盆內。海盆一方	estuary and designed to impound incoming
	面可由蓄水工程,另一方面可由上游海	tidal water in the basin or basins formed by
	口或海灣海岸所形成。堰之建造可能形	the retaining works on the one hand and
	成兩個分離的海盆,如此利用更用彈	the upstream estuary or coast of the bay on
	性,所能得到的潮汐能更多。	the other hand. The barrage may be
		constructed so as to form two separate
		basins whereby more flexible exploitation
		of the tidal energy may be obtained.

10.2.6	蓄水灣	10.2.6 Storage basin
	由堰所構成的海盆,可容許侵入的潮	A basin formed by the construction of a
	汐,由垂直障礙物而生的反射波,或抽	barrage into which water from an incoming
	泵系統所得之水流入,儲存其中,直到	tide, from waves reflected by a vertical
	海盆內水位有足够高差以便產生電力。	barrier or from a pumping system is
		allowed to flow, is impounded and stored
		until such time as the head between the
		level of the water in the basin and that
		outside the basin is sufficient to enable
		useful energy to be produced from it.
10.2.7	浮式潮汐電廠	10.2.7 Floating tidal plant
	裝置在一錨定之浮動設施上,藉著使用	A plant that is installed on an anchored
	水輪、螺旋,或低水頭水輪機而利用退	floating base and exploits the kinetic
	潮、漲潮時水動能之電廠。	energy of the tidal ebb and flow with the
		aid of water wheels, screws or low head
		water turbines.
10.2.8	潮渠	10.2.8 Tidal race
	為一可輸送潮水至水力運作機器或蓄水	A channel conveying tidal water to (or
	灣的渠道。	from) a hydraulically operated machine or
		impounding basin.
10.2.9	潮汐電廠之尖載運轉	10.2.9 Peak load operation of tidal power station
	在計劃體系之運轉電力供應系統中,使	The use of the storage facilities of a tidal
	用潮汐發電體系的儲存設備以供應其尖	power scheme to enable it to be used to
	峯電力需求之使用方式。	contribute to meeting peak power demand
		on the electricity supply system within a
		planned scheme of operation.

10.3 波浪能	10.3 Energy by Wave Motion
10.3.1 波能	10.3.1 Wave energy
波中的總能量為流體異於靜止水面之位	The total energy in a wave is the sum of
能及運動水粒子動能的和。波能為由風	the potential energy of the fluid displaced
而來,而風又是因太陽能所產生。	from still water level and the kinetic
(註)波之動力可由如下式子估計:	energy of the moving water particles.
H _s ² T _{ert} (where	Wave energy is attributable to wind forces,
	which in turn are due to solar energy.
其中 Hs 為由波高米數(由波峯與波谷	Note the power in waves may be calculated
測得),等於一般由 20 分鐘取樣之水	approximately as:
面變化均方根的四倍,Te 為波浪周期	$H_s^2 T_e$ V:100000000 per motro of wowe from
(單位秒),由取樣資料所求出之能譜	$\frac{1}{2}$ Knowaus per metre of wave from
估計而得(見 10.3.2 之註解)。	where Hs is the significant wave height
	(measured from crest to trough)in metres
	(=4 times the root mean square surface
	elevation during a sample measurement,
	often of approximately 20 minutes) and Te
	is the energy period in seconds, calculated
	from the energy spectrum derived from
	sample measurements.
	(See note to 10.3.2)

	10.3.2	波能譜	10.3.2 Wave energy spectrum
		由一取樣資料 (通常為 20 分鐘)所得	A description of the wave climate during a
		波浪特性之描述。	sample measurement (often approximately
		(註)通常以分佈之方式表示,以波頻	20 minutes).
		(f)為橫座標;而以一小頻率範圍之	Note Usually presented as a distribution,
		能量「E(f)」為縱座標。二維或方向	with wave frequency (f) as the abscissa and
		波譜需另加波向之因子 (θ) , 而波譜	energy-in-a-small-frequency-range (E(f))
		動量對於波浪之特性之措述非常重要;	as the ordinate. A two-dimensional or
		第n個動量 (Mn) 定義為:	directional spectrum has an additional
		$\int_{\infty}^{\infty} \epsilon n E(\epsilon) d\epsilon$	dimension for the direction of the waves
		$J_0 \int dE(f) df$	(θ) . The moments of the spectrum are of
		Hs (見 10.13.1) 定義為 4√Mu,而 T	particular importance in characterizing the
		為M-1/M0。波之功率為 7.82M-1 瓩 /	wave climate; the n-th moment (Mn)is
		米波峯寬。(進一步之應用統計數學計	defined as:
		算波能的資料見美國能源部 1979 年第	$\int_{0}^{\infty} \epsilon n E(f) df$
		42 號能源報告—Wave Eenrgy。	$\int_0^{\infty} F^{\infty} E(f) df$
			Hs (see 10.3.1) is defined as $4\sqrt{M}$ ward Te
			as M_{-1}/M_o . The power in waves is thus 7.82
			M-1 kilowatts per metre of wave front. (For
			further information on the application of
			statistical mathematics to wave energy
			calculations see "Wave Energy",
			Department of Energy, Energy Paper No.
			42,1979)
	10.3.3	風浪	10.3.3 Sea (or Wind sea)
		波能譜之一部份,由當地風所造成的。	That part of a wave energy spectrum
			containing waves which were generated by
			the wind that is working on them (i.e.
			which were generated recently in time and
1			locally in space).

10.3.4	湧浪	10.3.4 Swell
	波能譜的一部份,非當地風所造成,湧	The part of a wave energy spectrum
	浪通常來自遠處所產生的波源且通常存	containing waves which have escaped the
	在於波能譜低頻部的一狹窄頻帶中。	influence of the wind which generated
		them. As swell is normally advected from
		more distant generating sources, it
		normally falls in a narrow frequency band
		in the lower frequency part of the
		spectrum.
10.3.5	波峯長度	10.3.5 Crest length
	在垂直於波的傳播方向上測量到的兩相	The distance between adjacent wave crests,
	鄰波峯間的距離。	measured perpendicular to the direction of
		propagation.
10.3.6	波鋒面	10.3.6 Wave front
	為一垂直於波之傳播方向以波的相速度	An imaginary surface perpendicular to the
	移動的想像面。實際的波浪可考慮由許	direction of wave propagation and moving
	多波鋒面所組成,但其中一些(非全	at the phase velocity of the wave. Real seas
	部)可能以相同的方向傳播。	may be considered as composed of a
		multitude of wave fronts, some but not all
		of which may be propagating in similar
		directions.
10.3.7	波能裝置	10.3.7 Wave energy device
	一種設計來獲得波能以期轉換成有用能	A device designed to capture wave energy
	的裝置,此種能可能為電能或非電能,	for conversion to useful energy, which may
	且可加以傳送至陸上或不可以傳送至陸	or may not be electrical energy and may or
	上。	may not be transmitted to shore.
10.3.8	波能發電機	10.3.8 Wave-powered generator
	為一種吸收波能裝置,能轉換抽取波能	A wave energy extraction device that
	為電能。	converts the energy extracted into
		electrical energy.
10.3.9	波能氣輪機	10.3.9 Wave energy air turbine
	一種被設計經由空氣作為媒介用以從波	A turbine/electric generator that uses as
	浪之運動或壓力中抽取能源的渦輪機/	working fluid air compressed by the
	發電機。	pneumatic system designed to extract
		energy from the movements or pressures of
		sea waves.

10.3.10 低水頭波能水輪機	10.3.10 Low-head wave energy water turbine
一種被設計來操作大量低位能之水,如	Turbines designed to operate on large
潮汐能或波峯與波谷間之高度差的渦輪	volumes of water of low potential energy,
機。	such as tidal energy or the height
	difference between a wave crest and
	trough.
10.3.11 點吸收器	10.3.11 Point absorber
為一種波能裝置,可吸收各方向的能,	A wave energy device which can absorb
且各方向之效率約相等,而此種吸收器	energy from all directions simultaneously
之大小較平均波長為小。	with approximately equal efficiency and
(註)雖然線性波浪理論能推知點吸收	which is small in comparison with the
器可從較其本身寬數倍的波鋒面上抽取	mean wave length. Note Although linear
能量,但目前尚無可能發展一套實用的	theory would predict that a point absorber
系統。此乃因線性理論僅適用於很小振	extracts energy from a wave front many
幅之波浪,而此小振幅波浪,對波能轉	times its own width, it has not yet been
換而言並不動要。	possible to develop a practical system that
	does so. This is because non-linear
	behaviour invalidates the theory for all but
	very small wave amplitudes, which are not
	of interest in wave energy conversion.
10.3.12 海鴨子	10.3.12 Duck
為一波能裝置,在一長形的圓柱形龍骨	A wave energy device consisting of a long
上,裝置有一系列的海鴨子,動力由龍	cylindrical spine on which a series of
骨上的海鸭子之相對運動而產生。	individual oscillating vanes (or ducks) are
	located; power is generated by the relative
	motion of the ducks oscillating about the
	spine.
10.3.13 筏	10.3.13 Raft
為一波能裝置,由一連串鉸鏈相連的淺	A wave energy device consisting of a
浮筒構成,動力係由相對的角運動產	series of relatively shallow pontoons
生。	connected by hinges; power is generated
	by the relative angutm motion.

10.3.14 振盪水柱	10.3.14 Oscillating water column
為一波能裝置,基本上由無底而上部有	Any wave energy device consisting
小孔的盆狀物組成。波使得盆中的水柱	essentially of a box with no bottom and an
產生振盪,誘使振盪空氣流經小孔而推	orifice in the top; waves cause the water
動氣輪機。	column in the box to oscillate, inducing an
	oscillating air flow through the orifice and
	thus driving an air turbine.
10.3.15 波能整流器	10.3.15 Wave energy rectifier
為一種錨錠式波能裝置,由一上、下水	A seabed-mounted wave energy device
位貯槽構成。具有一單波谷時水由下水	incorporating upper and lower level
位貯槽流出兩槽間之流動可使低水頭渦	reservoirs, with one-way flap valves
輪機運作。	arranged to allow water to flow into the
	upper reservoir from wave crests and out
	of the lower reservoir into wave troughs;
	the flow between the reservoirs operates a
	low-head turbine.
10.3.16 可撓袋	10.3.16 Flexible bag
為一種波能裝置,由充滿空氣的伸縮袋	A wave energy device consisting of air
組成。伸縮袋連於正對波浪的潛式船體	filled, flexible bags attached to the top of a
之上端,此船體包含由氣輪機相連之	submerged hull lying head on to the sea,
低、高壓導管,當波峯掃過袋面時空氣	which contains high and low-pressure duct;
被排入高壓導管推動氣輪機;當波谷通	in wave troughs the bags refill with air
過袋下方時空氣經由低壓導管充入袋	from the low-pressure duct.
中。	
10.3.17 波力負載	10.3.17 Wave loading
波浪施於潛式或半潛式之結構物上之	The forces exerted by wave on submerged
力,以作為結構抗波力之設計基礎。	and semi-submerged structures calculated
	to form a basis for the design of structures
	to withstand wave forces.
10.3.18 結構反應	10.3.18 Structural response
波能抽取裝置結構對波浪之運動或壓力	The sensitivity of the structure of a wave
的反應靈敏度,從而自波浪吸取能量。	energy extraction device in responding to,
	and hence in extracting energy from, the
	movements or pressures of sea waves.

10.3.19 潮汐補償		10.3.19 Tidal compensation
因潮汐在波	能抽取装置之上引起水位改	The measures requiring to be taken to
變的效應,	所需採取之補償方法,特別	compensate for the effect of the changes in
是在收缩坡	道系統及系統依靠在海床上	sea level due to tides upon wave energy
連成其動力	抽取設備之一部份時。	extraction devices, particularly in the case
		of converging channel ramp schemes and
		in schemes relying on a sea-bed connection
		as part of their power extraction
		mechanism.
10.3.20 波聚集		10.3.20 Wave focusing
在一特別區	.域內藉著利用某種方法(如	A means of increasing the power of waves
潛式平板)	將由較廣鋒面之波能以折射	in a particular area by using some means
方法集中於	来區域以增加該區域之波能	(such as submerged plates) to concentrate
的方法。		the wave energy from a wider wave from
		into that area by refraction.
1	0.4 洋流能	10.4 Energy by Ocean Currents
10.4.1 水下洋流電	廠	10.4.1 Underwater ocean current plants:
水中工廠結	;合輪子、推進器、降落傘狀	underwater mills
物,設計來	獲取水中洋流之能量並將其	Plants incorporating wheels, propellers or
轉換成有用	能源的電廠	"parachutes", designed to harness the
		energy available in underwater ocean
		currents and convert it into useful energy.
10	.5 熱梯度能	10.5 Energy by Thermal Gradients
10.5.1 海洋熱梯度		10.5.1 Ocean thermal gradients
深部海水與	表面海水之温度差,一般約	The temperature differences between deep
在 14~25℃	之間。	ocean water and surface water. These may
		range from 14 to 25°C.
10.5.2 海洋熱能轉	换(OTEC)	10.5.2 Ocean thermal energy conversion (OTEC)
利用深部海	水與表面海水之溫度差以產	The exploitation of the temperature
生有用之能	。此溫差構成一熱系統可用	difference that exists between the surface
來蒸發及冷	凝某種工作流體,如氨或丙	and the depth of oceans to produce useful
烷,以推動	1渦輪機或其他熱機。	energy. Such a temperature difference
		constitutes a thermal system that can be
		used to vaporize and condense a working
		fluid such as propane or ammonia to drive
		a turbine or other heat engine.

	10.6 鹽梯度能	10.6 Energy by Salinity Gradient
10.6.1	鹽梯度能	10.6.1 Salinity gradient energy
	在河川流入海洋於淡水和鹽水介面,或	At the interface of fresh and salt water
	在不同鹽度水之介面,會產生滲透壓,	where rivers enter the sea or at the
	可藉適合之半透膜來產生有用之能,或	interface of waters of different salinity,
	利用介面上之電化勢來直接產生電流。	osmotic pressure occurs which may be
		exploited to provide useful energy by the
		application of suitably disposed semi-
		permeable membranes, for example, in the
		form of a closed cylinder. Alternatively,
		the electrochemical potential at the
		interface may be exploited to generate
		electric current directly.